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SOLUTION OF THE DIRAC EQUATION WITH
MOBIUS SQUARE POTENTIAL PLUS RING
SHAPED POTENTIAL UNDER THE
FRAMEWORK OF SPIN SYMMETRY VIA
SHAPE INVARIANCE

Oroctakang F.T, Edet J. Uwah

Abstract — In this paper we investigate Dirac equation with spin symmetry for Mobius square potential plus ring—shaped potential under
the framework of supersymmetric quantum mechanics (SUSYQM). We construct symmetrical partner Hamiltonians which satisfy shape
invariance and via a one-to—one mapping, the relativistic energy eigen value is obtained. We solve for the wave functions from the
hypergeometric differential equations which are developed by transforming the radial and polar equations via SUSYQM.

Keywords-Dirac equation, Mobius square potential, Shape invariance, Spin symmetry.

1 INTRODUCTION
chrodinger equation is the workhorse equation of
non-relativistic quantum mechanics. Klein Gordon
equation is suitable for the description of relativistic
spinless particles like pions, mesons, z*, z°.

First order Duffin — Kemmer — petiau equation is best for
the description of relativistic spin 0 and spin 1 bosons.

Dirac equation is ideal for the description of relativistic spin
Y, particles like electrons. Dirac equation is invariant with
respect to Unitary transformation, guage transformation,
Lorentz transformation, the transformation matrix s, space
inversion, charge conjugation and time reversal.

Dirac equation has facilitated the understanding of
the phenomenon of negative energy states. In recent times,
research has pivoted on quantum mechanical wave
equations because of the significance of the solutions in
guantum mechanics and other fields. The exact solutions of
central and non-central potentials find applications in
molecular physics, nuclear physics, quantum chemistry, etc
The exact solutions of Dirac equation for ring — shaped
potentials can be used for the description of ring shaped

molecules like benzene and the interactions between the
deformed pair of nuclei'[37].

According to Dirac theory, spin symmetry arises
when the difference between the repulsive Lorentz vector
potential VV (r) and the attractive Lorentz Scalar potential
S(r), is a constant (i.e.A(r)=V(r)-S(r) = constant=C,) .
Pseudospin arises when the sum is a constant (i.e.
2(r =V (r)+S(r)=constant=C ).

Implicitly, for spin symmetry,d(“):o and Z(r) is the
dr

potential under investigation and for pseudospin symmetry,

2.0 _, and Ar is the potential under investigation.
dr

Pseudospin symmetry was observed more than four decades
ago in spherical atomic nuclei and was later introduced in
nuclear physics to take care of the experimentally observed
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quasi-degeneracy in single nucleon doublets between

normal parity shell model orbitals (n, I, j=1+1/2) and (n-1,
I+2, j=1+3/2), where, n, |, and j represent the radial, angular
and total angular momentum quantum numbers respectively
[16], [17], [18], [19].

Symmetry limits of (D+1) — dimensional Dirac equation
with mobius square potential has already been investigated.
[9].

Also, approximate k-state solutions to the Dirac
Mobius square — Yukawa and Mobius square — quasi
Yukawa problems under pseudospin and spin symmetry
limits with Coulomb — like Tencor interaction has already
been investigated [10].

IN ADDITION, relativistic spin and pseudospin
symmetries of inversely, quadratic Yukawa - like plus
Mobius square potentials including a Coulomb - like
Tensor interaction has already been investigated [11].

Furthermore, Pseudospin symmetry of Dirac
equation for a Mobius square plus Mie type potentialwith a
Coulomb - like Tensor interaction via SUSYQM has
already been investigated [47].

Dirac equation with different potentials under the
framework of spin and pseudospin symmetries using
various techniques like Supersymmetric Quantum
Mechanics (SUSYQM), Nikiforov — Uvarov method (NU),
Asymptotic Iteration Method (AIM), Kustaanheimo-Stiefel
method (KS), Group theoretical method, Factorization
method, Path integral method, Darboux transformation,
Tridiagonal representation, etc, have been investigated by
many authors.

In this paper, we intend to solve Dirac equation for
generalized Mobius square plus ring — shaped potential
under the framework of spin symmetry using SUSYQM.

This paper is organized as follows. In section 2, we
give a brief introduction of Dirac theory and the decoupling
of the generalized Dirac equation. In section 3, we briefly
give an introduction of SUSYQM formalism. Section 4 is
purposely for the solutions of the decoupled equations using
SUSYQM. A brief conclusion is given section 5.

2 DIRAC EQUATION WITHOUT TENSOR COUPLING
The most general Dirac equation for spin % particles
moving in an attractive scalar potential S(r), a repulsive
vector potential V (r)and a tensor U(r) in the relativistic unit
is, [22].
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[;B+ﬁ(M +S(r))—i,Bg.FU(r)}w(r)

=[E-V(N]w(r)

(1)

where E is the relativistic energy of the system, p=-iVis

the three dimensional operator and M the mass of the
particle, & and g are 4x4 Pauli matrices.

110 0
(1 oYy 11 0 O ,
F=lo 21)70 0 21 4 @
00 -1 1
o oo li ol
o = yOp = )
"lo, 0)7F (10
3)

Pauli matrices satisfy the following anti-commutation
relations

o0 +a;.a; =20 [(I) (I)j (4)

a;.f+fa;=0 ()

2 3 )

af=ﬂ2=(o J ©)
. 0 .

P :—|§ (1<j<0) )

Dirac equation with scalar and vector potential without
tensor coupling in the relativistic unit (i.e.z=c=1) is
given by

(8)

VZ4(Ey M =Y (MM +E, = QF(r 6 ¢)=

where the laplacian operator in spherical coordinates is

given by

széi(rzijJr 21_ i(sin@i)
r°or or resin@ oo 00 ©)
1 0°

+—
r’sin® @ og*
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In spherical coordinates, the most general potential
Z(r, 8, @) for which Dirac equation is separable is given by

Z(9)

r.2

(10)

Z(r,0)=2(r)+

—ar —ar 2
2(r.0)=v, +v,[ ATBET )y [ArBe +[ﬁ+2p_cosej (11)
C+De ™ C+De™ resind@

For this situation, the wave function F, (r,8,¢) is given
by

Fnk(r,e,¢)=@j%

Applying the standard‘érocedure of separation of variables,

(12)

v (@)

the  decoupled equations  for  the  functions

R(r),H (&hand are obtained and they are as follows:
d*R(r

IX )+(yz(r)+f—2jR(r):ng(r) 13)
d’H (6 cosec’d 1

- de(z )+[7Z(6)+mfcosecze— —ZJH(H) (14)

= 1H(0)
d’y (¢

- d(D(Z )+7Z((/))=m.2w(<p) (15)

where A2 and m? are separation constants and
y=(M+E, -C,), ¢ =(E, —M)(M +E, -C,)

3 SUPERSYMMETRIC QUANTUM MECHANICS
In supersymmetric quantum mechanics formalism, the

hamiltonian can be expressed in terms of creation (A™T)

and annihilation ( A~ ) operators. Also, it can be expressed
in a factorized form given by

H =ATA~ and Ht=A" AT (16)
The creation and annilhilation operetors are defined by
_ oo + h 0
A=——rnw——+ = X
v2m  OX P09 \2m oX 09

(17)

Where ¢(X) is the superpotential
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H y (x,a) =E7y (x,a) (18)
ATATy (x,a) = Ew (x,a) (19)

[% &+ ¢2(X)‘% 4 (X)j'/’(x, a)=Ey (xa) (20)

(‘2’?; (;j—):erV(x)j w(x,a)=Ey (x,a) (21)
Comparing (20) and (21)

V.00 400 - -4 2)
H* ' (x,a) = E"y" (x,a) (23)
A A"y  (x,a)=E "y  (x,a) (24)

[_;_m % + ¢ (x,a) + % ¢'(X)JW+(X,8)= E'y" (x.a) (25)

[__hz £ v+(x>)w(x,a) =E'y’ (xa)  (20)
2m dx

Comparing (25) and (26)

h ’
m¢ )

In supersymmetric quantum mechanics, it is customary to
describe V_(x)(i.e. one of the partner Hamiltonians) in

V. (X) =¢° (X) + 27)

terms of its ground state wave function ¥ ) (=¥, ), whose

corresponding ground state energy E, is adjusted to zero
(unbroken symmetry).

Hi o =2 TR 5 6o | (29)
From (28)
wo(X) = Nexp _J;_m J, #(ndy (29)

Where N is the normalization constant
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In this formalism, solvability is guaranteed when the

Hamiltonians satisfy the shape invariance relation given by

V, (a,,x)=V_(a,.,Xx)+R(a,,) (30)

Where an+; is a new set of parameters determined from the
old set via a one-to-one mapping F:a,—a. ., =F(a,)
and R(a,) is an additive constant which is independent of

the variable X

When shape invariance is satisfied, the energy spectrum of
the n™ Hamiltonian is determined via

E =2 R(a) (31)
k=1
The total energy of the system is given by
Eomi =E, +Egn T B¢ (32)

Where E | is the energy due to broken symmetry and E;

is the energy due to unbroken symmetry, which is usually
adjusted to zero

Also when shape invariance is satisfied, the wave function
is obtained from

h h
(+) _ =1, () =) _
!//nf - A !//n ' n -

' JVE, E. .,

4 SOLUTION OF DIRAC EQUATION

In this section, we intend to solve Dirac equation with
Mobius square potential plus ring shaped potential under the
framework of spin symmetry via shape invariance using
SUSYQM. According to Dirac theory, spin symmetry arises

when A(r) = V(r) —S(r) = Constant=C, ~ Or w -0,
r

Ayl (33)

while Z(r) is the potential under investigation. The
potential under study is given by

—ar -ar 2
2(r.0) =V, +v,[ 2B )\, [ArBe +[ﬁ+2p_cosﬁj (34)
C+De™ C+De™ r’sin@

Where,V,, Vi, 4, B, C, D, o are constant coefficients. g
and p are dimensionless real quantum parameters related to

the angle dependent potentials, while r and @ are the
radial and polar coordinates respectively.
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Z(r,0)=2(r)+Z(9) (35)
2
A+ Be™ A+Be ™

Z(r) =V, +V,| —— |+ S 36
(N =Vo 1(C+De”} 2(C+De‘”] (36)

+ pcosd
z(p)=BEPL0S0 (37)

sin“ @

Equation (36) is the radial potential, while equation (37) is
the angle dependent (i.e. polar) potential

4.1 Solution of The Radial Equation

_RM) v (HR(r)=E;, R(r)

dr? (38)

Comparing equation (13) and equation (38),

&= E, . is the total relativistic eigen energy value and

V,; (1)is the effective potential

2
S+te S+te 2 (39)
Vo (r)=7|V,+V,| ——— [+V. +=
ar (1) 7[ 0 1[1_wear] 2(1_ Eaer 2

Where ﬁ:s, E:t, Ez_w
C Cc

Cc
Introducing
1 aZE—ar

~N— 40
re (1—e"”)2 “o

as the approximation of the centrifugal term, since (13) is
not exactly solvable [48].
Substituting (40) in (39), we obtain

veﬁ<r>=m(ﬂlezm+ﬁzews) (a1)
Where,

B =(WVot? — Vito) (42)
B, = ( Nt + 2,5t + 1o’ - yVlsa)) (43)
b= ( WV, + Vs + 7V252) (44)

Assuming that the superpotential is of the form

IJSER © 2016
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Qze—m’

#(r)=Q+—+—— (45)
(1— we™ ™" )
Therefore,
2 B ) Q22e—2ar 2Q1Q2e7ar
(¢(r)) o (1—a)e“” )2 ' (1—a)e*””) o)
§(r)=—— (47)
(1— we™ ™ )

And considering that the superpotential is the solution of the
RICCATI equations

Vi (1) =(¢(r)) = ¢ (r)+ Egm, (48)

Ve (1) =(8(r))" + ¢ (r)+ Eopm, (49)

Substituting (46) and (47) in (48)

Ve (r)= M{(sz + 0" By +0°Q —2QQ,m)e (50)
+(@Q, +2QQ, - 20k, —20Q7 Je " +Q} + E; . }

Comparing (41) and (50),

B=Q +0'Egyy +0°Qf ~2QQ0 (51)

B, =aQ, +2Q0Q, - 2wk, - Zlez (52)

By =Q +Eqp, (53)

(51) + w(52) + »*(53),

B+ of, + @ B, = awQ, + QZ which implies

Q; +(aw)Q, —(B,+wp, +* ;) =0 (54)
Substituting (53) in (51),

Q1=(Q§+2"’éﬁj_ﬂl) (55)

From (54),
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_ 4 ?
Q,- aw 1i\/1+ (ﬂl"'w:fz:'a) ﬁs) (56)
2 a‘w
4.1.1 Shape Invariance for Radial Coordinate
V_(r.a0)=(¢(r)) 4 (r) 67)
., Q(Qra)e” 200 Qife™-e) (58)
V_(r,a,)=Q  + 7+ Tt 2
(ri3;) (1-we)  (-ee™)  (1-0e™)
V. (r.a,) =(#(r)) =4 (1) 59)

V.(ra)=QF + Q,(Q, —a)e;“' L 20Qe Q; (e —e‘:’) (60)
(1—a)e’”r) (1—609 M) (1—a)e’“)

Considering the mapping
Q, (Q2 +a) which implies @, =Q, + N and a, =Q,

The eigen energy spectrum equation corresponding to the
supersymmetric potential  V_ (energy due to shape
invariance) is given by

n

E, =Y R(a,)=R(a)+R(a,)+R(a;)+...+R(a,) (61)

k=1

For solvability, the partner Hamiltonians satisfy the shape
invariance relation

R(a,)=V.(r.a)-V (r.a) (62)
R(a) <[ BHOBAY) (BB o
%)= 28,0 2,0
() BB (21 BBY e
Qo 22,0
_ azz"'a)zﬁs_ﬂl 2_ a§+a’2ﬂ3_ﬂ1 2
R(&)= " %00 (65)

28,0

2a, 0 2a,0

R(an)=£a§_l+w2ﬂ3_ﬁlj _(a§+w2ﬂ3_ﬁ1j (66)
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£ =(a§ +0’ B,

" 2a,0

2 2 2
_ﬂl _ an+a)ﬂ3
28 w

2

(67) is the eigen energy value due to shape invariance.

From (53),

2 2 2
a‘O + 0 ﬂS_ﬂlj (68)

2 e —
0 ml — ﬂa Ql ﬂa ( 2a060
(68) is the energy due to broken symmetry.
E, is the energy due to unbroken symmetry.

In supersymmetric quantum mechanics formalism, the
ground state energy of one of the Hamiltonians (E,) is
usually adjusted to zero for unbroken symmetry.

The total energy spectrum is given by

E,. =¢"=E +E; ., +E, (69)
B = ﬂs—i(an +M] (70)
4 a,
where
a,=a(n+o) (71)
1 (72)

o a—

The total relativistic eigen energy spectrum equation is
given by

(Enk—M)(M+Enk—cs)=ﬂ3—4[ P ﬂlJ (73)

The radial wave function is the solution of the
hypergeometric differential equation which is obtained by

substituting the transformation Yy =we * in (13). The
transformed equation is given by

d'R(y) | (12y) dR(Y) | [y + QY+ O o (74)
dy?  yd-y) dy v (1-y)
Where

1683
Ql_ nmI (ﬁ1/CU) (75)
a C()
—2E, .+ (B o

. ,(,}.lzw(zﬂz ) -
E .+

Qz — n,m,zl 2ﬂ3 (77)
o w

The solution of (74) is a hypergeometric function and it is
given by

(1-1) (1+0)

Rnl(r): N,y 2 (1_ y)T 2F1(_nln+,u+U;/1;Y) (78)
Where N, is the normalization constant,
u-1 (1+v) ( 1) 1
gy ) = -Q,-Q,-Q,+> | +=.

2 . 2 TR (79)
Thus,
R,(r)=N, (a)e_o’r )JE (1— we " )EU?QFQZ?Q3+X X (80)

- —

2Fl[—n;n+2A/—Q3 +1+2, -, -Q,-Q, +£;2:{—Q3 +1 0™

According to the normalization condition J'| R(r) =1, it

implies that

,U*l l+u)

|
j SR (-non+ p+o; 5 y)dy =1
0

(81)

Using the condition of orthogonality of Jacobi polynomials

| ﬂ*l 1+u)

jy 2 B (—nn+ pu+o; s y)dy

0

__nl ?(u)T(u+1+v) (82)
p+v+2n T(u+v+n)T(p+v)

Therefore,

N :{y+u+2nxl“(,u+u+n)l“(y+u) N
" n! FZ(,u)F(y+1+u) (83)
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The complete radial wave function
R, (r) = /1+U+2nxr(,u+l)+n)l—'(y+u) mx

mya n! I?(u)T(v+1+n)

(oo ) ™ oot

is given by

1
{2 F [n; n+2)-Q, +1+ 2(791 -0,-0, +%]2 120, +1; we“H

(84)
4.2 Solution of the Polar Equation
EHO v, (0)H(0)=2H(0) (85)
Comparing (14) and (85)
Vye (0) = (3B +y5cos6+m? — (11 4))cosec’6 —(1/4)  (86)
Assuming that the superpotential is of the form
#(6)=ptand—qcotd (87)
Therefore,
(¢(9))2 = p®sec 6 +q°cosec’0—(p+q)’ (88)
¢'(0) = psec’ 6+ qcosec’d (89)

The superpotential is considered to be the solution of the
RICCATI equations

V- (0)=(4(0)) ~¢'(0)+Eqp, (90)
V:(0)=(¢(0)) +¢'(0)+Eqp, (91)

Substituting (88) and (89) in (90),
V- (0)= p(p—l)secz0+q(q—1)cosec26'—(p+q)2+E0’vaI (92)

Comparing (86) and (92)

o’ —q=(yB+y5cosO+m; —(1/4)) (93)
p*—p=0 (94)
—%=—( p+0a)” +Eqn, (95)
From (93)
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q :%{11\/“ 4(7,B+7/5c050+ m; —%)} (96)

From (94)

p=1 (97)
From (95)
Eomi =(P+0) —(L/4) (98)

(98) is the energy due to unbroken symmetry for the polar
coordinate

4.2.1 Shape Invariance for the Polar Coordinate

Super symmetric partner potentials are given by

V_(6,3,)=(¢(0)) —¢'(0) (99)
V_(6.3,)= p(p-1)sec’ 0+q(q-1)cosec’0—(p+q)”  (100)
V,(0.,)=(¢(0)) -#'(0) (101)
V. (6.3,)= p(p+L)sec’ 0+q(q-+1)cosec’d—(p+q)’ (102)

The eigen energy equation due to shape invariance is given
by

En‘:kzn_l:R(ak):R(a1)+R(a2)+R(a3)+...+R(an) (103)

For solvability, the partner Hamiltonians satisfy the shape
invariance relation

R(a,)=V,(6,3)-V (0,a,)

R(p+Lg+1)=-[(p+0)+(q+0)]+[(p+1)+(q+1)] (105)

(104)
R(p+2,9+2)=—(p+q+2)+(p+q+4) (106)
R(p+3,q+3)=—(p+q+4)+(p+q+6) (107
R(p+n,q+1)=—(p+(n-1)+g+(n-1))+(p+n+q+n) (108)

En‘:—(p+q)2+(p+q+2n)2 (109)
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(109) is the eigen energy value due to shape invariance.
Eomy =(P+0) —(1/4) (110)
(110) is the energy due to broken symmetry.

The total energy spectrum is given by

Eomi=E, +Eg i T B¢ (111)

- —(p+q)2+(p+q+2n)2+(p+q)2—(1/4)+0 (112)

nml

E...=(p+q+2n) —(1/4) (113)

A=1>=(p+q+2n) —(1/4) (114)
it =4 (115)

(115) is the total energy spectrum.

The polar wave function is of the form

H (g)z(sin a)q (cos@)pY(e) where Y (6) is the spherical
harmonics and it is obtained by introducing a new variable

x=sin’@ in equation (14), transforming it to a
hypergeometric differential equation given by
d?y 1 1 1
X(1-x ol = —|]pX
( )dxz +{(q+2j K“zj+(p+zm (116)

{x%+n(p+q+n)y(x)}:0

Thus,
H(8)=N,(sind)" (cos®)” F(-n, p+q+n;q;x)  (117)
Where Nn is the normalization constant and

F (—n, p+q+n;q; X) is a hypergeometric function

H

According to the normalization condition J’H(g)zdgzl
0

where

H(6)=N,2"*(1-2)" ,F(-nt+n;3;Z) (118)

H(6)=N,z2"'(1-2)" R (-n,t+n;7;Z), (119)

1685

1
77=q+§ t=p+q, (120)

it implies that
|
N [Z7(1-2)7" R (-n,t+mp;Z)dZ =1 (121)
0
Using the condition of orthogonality of Jacobi polynomials

[z (1-2)7 R (-nt+nin; 2 )iz

° (122)

_ ! XFZ(n)F(t+n—77+1)

_(t+2n) I(t+n)I(7+n)

an[(t+2n)x L (t+n)C(;+n) } 129
nl  T*(p)Tt+n-n+l)

The complete polar wave function is given by

1/2

1
+q+2n) T(p+a+n)l(g+>+n)
(P+q+2n) 2

n! Fz(q+;JF(p+;+n)

H(0)= X (124)

(sin@)" (cos®)” F (—n; p+q+n;q;sin® 0)
The standard solution of the azimuthal equation is given by

v ($)= % (125)

The total wave function is

eiml¢

{u+u+2n I‘(u+u+n)I‘(u+u)T2

n! I?(4)F(v+1+n) r

[0 -l
X
X

Fomi (1,0, 6) =

.
{zla[-n;rwzﬂ/-gz +l+2[—Qj—QZ—QQ+%)Z 20~ +L e 'H

2
1
(p+q+2n) r(P*Q*”)”Q*a*”) [ (sin&)"(cosﬁ)”F(—n;p+q+n;q;sin29)] e
X
! 1 1 i X
n l‘z(q+5]1"(p+§+n) sing e

5 CONCLUSION

In this work, we have shown that using SUSYQM, one can
easily obtain the eigen value without solving the
Schrédinger—like differential equation. Also, we have
demonstrated that using SUSYQM, a hyper geometric
differential equation can be established, from which the
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normalized wave functions can easily be determined in
terms of Jacobi polynomials. Furthermore, we have shown

that Dirac equation with certain potentials that cannot be [11]

solved using the traditional method can be solved using

SUSYQM.
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